Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №6E857B

Задача №362 из 1053
Условие задачи:

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.

Решение задачи:

Проведем отрезок ОС, как показано на рисунке.
Треугольники ACO и BCO - прямоугольные (по свойству касательной).
То есть углы CAO и CBO равны по 90° каждый.
OC - является биссектрисой для угла ACB (по свойству касательных), следовательно углы ACO и BCO равны 6°/2=3°.
По теореме о сумме углов треугольника, для треугольника ACO запишем:
180°=∠OAC+∠ACO+∠COA
180°=90°+3°+∠COA
∠COA=180°-90°-3°=87°
Аналогично, для треугольника BCO получим, что ∠COB=87°
∠AOB=∠COA+∠COB=87°+87°=174°
Проведем отрезок AB и рассмотрим треугольник ABO.
По теореме о сумме углов треугольника запишем:
180°=∠AOB+∠BAO+∠ABO
180°=174°+∠BAO+∠ABO
∠BAO+∠ABO=6°
ABO равнобедренный треугольник, т.к. OA и OB - радиусы окружности и, поэтому, равны. Следовательно ∠ABO=∠BAO (по свойству равнобедренного треугольника). И получается, что ∠ABO=∠BAO=6°/2=3°
Ответ: ∠ABO=3°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №B08979

Найдите площадь параллелограмма, изображённого на рисунке.

Задача №6AC1BC

Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).

Задача №74F521

На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Задача №107445

Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Задача №84B6C0

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.

Комментарии:


(2015-04-06 22:51:21) Администратор: Елена, по сути это тоже самое, что и в решении, только я отталкиваюсь от суммы углов треугольника (что знает большинство школьников), Вы отталкиваетесь от суммы углов четырехугольника (что знают далеко не все школьники).
(2015-04-06 18:59:36) Елена: В четырёхугольнике АСВО уголы А и В прямые, угол С равен 6 градусов. Сумма углов четырёхугольника 360 градусов, значит угол О равен 174 градуса. А дальше по теореме о сумме углов треугольника...

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика