ОГЭ, Математика. Геометрия: Задача №183D76 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №183D76

Задача №359 из 1087
Условие задачи:

Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80. Найдите расстояние от хорды AB до параллельной ей касательной k.

Решение задачи:

Проведем отрезок OB как показано на рисунке.
Расстояние от хорды AB до параллельной ей касательной k обозначено как CD.
CD=OC+OD, OC - это радиус окружности, найдем OD.
По условию задачи k||AB. CD перпендикулярен k (по свойству касательной), тогда CD перпендикулярен и AB (т.к. CD - секущая для параллельных прямых, и внутренние накрест-лежащие углы равны), значит треугольник OBD прямоугольный.
DB=AB/2=80/2=40 (по второму свойству хорды)
OB равен радиусу окружности.
Тогда по теореме Пифагора:
OB2=OD2+DB2
852=OD2+402
7225=OD2+1600
OD2=7225-1600=5625
OD=75
CD=OC+OD=85+75=160
Ответ: 160

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №CD5252

Радиус окружности, описанной около квадрата, равен 162. Найдите длину стороны этого квадрата.



Задача №9A65C7

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=12.



Задача №34CB26

Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 32°. Найдите угол C этой трапеции. Ответ дайте в градусах.



Задача №99EB29

Человек, рост которого равен 1,8 м, стоит на расстоянии 11 м от уличного фонаря. При этом длина тени человека равна 9 м. Определите высоту фонаря (в метрах).



Задача №D5F808

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.

Комментарии:


(2018-03-22 13:31:56) Администратор: Потому, что проведен из центра к точке на окружности, т.е. OB и есть радиус.
(2018-03-16 17:52:17) : Почему ОB равен радиусу окружности?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика