Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 7.5, а AB=2.
Отрезок AC равен сумме отрезков AO и OC, OC - равен радиусу окружности, т.е. 7,5/2=3,75. Найдем AO.
Проведем отрезок BO. BO - так же является радиусом окружности. AB -
касательная к окружности, следовательно AB перпендикулярен BO (по
свойству касательной).
Значит треугольник ABO -
прямоугольный, тогда по
теореме Пифагора:
AO2=AB2+BO2
AO2=22+3,752
AO2=4+14,0625=18,0625
AC=AO+OC=4,25+3,75=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=32.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.
В треугольнике ABC угол C равен 90°, cosB=5/6, AB=18. Найдите BC.
Комментарии:
(2018-02-07 23:55:24) Администратор: Марина, я немного расписал решение...
(2018-02-07 16:48:46) марина: как взять корень из этого числа