В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Рассмотрим треугольник АОВ. Этот треугольник
равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По
свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они
вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по
первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=75°
Ответ: /ODC=75°.
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.
В трапеции ABCD AD=4, BC=1, а её площадь равна 35. Найдите площадь треугольника ABC.
Углы при одном из оснований трапеции равны 77° и 13°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 10. Найдите основания трапеции.
Сторона квадрата равна 4√2. Найдите радиус окружности, описанной около этого квадрата.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 12°?
Комментарии:
(2016-04-18 13:33:01) Администратор: User, эти углы принадлежат разным секущим, поэтому они не являются внутренними накрест лежащими. К тому же, что бы говорить о накрест лежащих углах, надо доказать, что CD и AB параллельны.
(2016-04-16 09:18:47) User: Это внутренние накрест лежащие углы. ABO = ODC.