Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
По
определению тангенса, tgB=7/2=3,5
Ответ: tgB=3,5.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 5:3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=8.
Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
В треугольнике ABC угол C равен 90°, cosB=5/6, AB=18. Найдите BC.
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=5, AC=45.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 31.
Комментарии:
(2015-05-21 20:40:29) Администратор: Лена, по определению tg - это отношение ПРОТИВОлежащего катета к ПРИлежащему, поэтому 7/2.
(2015-05-20 16:30:44) Лена: Почему 7/2,а не 2/7?