В треугольнике ABC угол C прямой, BC=2, cosB=0,4. Найдите AB.
По
определению косинуса cosB=BC/AB => AB=BC/cosB=2/0,4=5.
Ответ: AB=5.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.
Найдите площадь параллелограмма, изображённого на рисунке.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.
Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Комментарии:
(2019-03-19 20:59:53) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2019-03-17 22:58:05) : в треугольнике авс угол А прямой ав 2 cosB 2/5 найти вс