Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 6 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 1 км/ч, а собственная скорость лодки 5 км/ч?
Обозначим:
S - расстояние от пристани до места рыбалки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 5-1=4 км/ч, по течению - 5+1=6 км/ч.
Составим уравнения:
движение лодки против течения:
S=4t1
движение лодки по течению:
S=6t2
общее время поездки:
6=t1+t2+2
t1=4-t2
S=4(4-t2)
S=6t2
Вычтем из первого уравнения второе:
S-S=4(4-t2)-6t2
0=16-4t2-6t2
0=16-10t2
t2=16/10=1,6 часа
Подставляем во второе уравнение:
S=6t2=6*1,6=9,6 км.
Ответ: 9,6
Поделитесь решением
Присоединяйтесь к нам...
Найдите корень уравнения 3x+3=5x.
Какое из приведённых ниже неравенств является верным при любых значениях a и b, удовлетворяющих условию a<b?
1) a-b>5
2) b-a>3
3) a-b<3
4) b-a<1
Решите систему уравнений
На координатной прямой отмечено число a.
Расположите в порядке возрастания числа a-1, 1/a, a.
1) a, 1/a , a-1
2) a, a-1, 1/a
3) a-1, a, 1/a
4) 1/a, a-1, a
Решите систему уравнений
Комментарии: