Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
25° и 100° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда /ABC=/BCD=25°+100°=125°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360° = 125° + 125° + /BAD + /ADC,
/BAD+/ADC=360°-125°-125°=110°, а учитывая, что /BAD=/ADC (по тому же
свойству равнобедренной трапеции), получаем /BAD=/ADC=110°/2=55°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 55°.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
Найдите площадь трапеции, изображённой на рисунке.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=11°. Найдите угол NMB. Ответ дайте в градусах.
В треугольнике ABC с тупым углом ABC проведены высоты AA1 и CC1. Докажите, что треугольники A1BC1 и ABC подобны.
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=1°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Комментарии:
(2015-05-24 18:26:39) Администратор: Аида, Вы забыли еще про два угла, посмотрите повнимательней.
(2015-05-24 17:11:43) Аида: 125+125= 250 же будет,почему вы 360 написали?