Диагонали AC и BD прямоугольника ABCD пересекаются
в точке O, BO=37, AB=56. Найдите AC.
BO=OD (по четвертому свойству прямоугольника).
Тогда:
BD=BO+OD=BO+BO=2*BO=2*37=74
AC=BD=74 (по второму свойству прямоугольника).
Ответ: 74
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла С треугольника ABC, изображённого на рисунке.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.
В треугольнике два угла равны 46° и 78°. Найдите его третий угол. Ответ дайте в градусах.
Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.
На окружности с центром O отмечены точки A и B так, что
/AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
Комментарии: