Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Рассмотрим каждое утверждение:
1) "Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны". Это утверждение верно по
первому признаку подобия.
2) "Вертикальные углы равны", это утверждение верно, по
свойству углов.
3) "Любая биссектриса равнобедренного треугольника является его медианой", это утверждение неверно, т.к., по
свойству равнобедренного треугольника, только
биссектриса, проведенная к основанию, совпадает с
медианой и высотой.
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 164. Найдите стороны треугольника ABC.
Сторона квадрата равна 6√3. Найдите площадь этого квадрата.
В окружности с центром в точке О проведены диаметры AD и BC, угол
OAB равен 65°. Найдите величину угла OCD.
Комментарии:
(2017-01-26 23:57:40) Администратор: Анастасия, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-25 18:27:37) Анастасия: Какие из следующих утверждений верны? 1.Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу. 2.Площади трапеции равна произведению основания трапеции на высоты. 3.Треугольника со сторонами 1,2,4 не существуют.