На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.
1) По условию задачи /ADB=/BEC, следовательно,
смежные им углы /BDE и /BEС тоже равны друг другу.
Тогда треугольник BDE -
равнобедренный (по
свойству).
Следовательно, BD=DE, по
определению равнобедренного треугольника.
2) Рассмотрим треугольники ABD и CBE.
AD=CE (по условию),
BD=BE (согласно п.1),
/ADB=/BEC (по условию),
следовательно эти треугольники равны (по
первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по
определению).
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinB=5/8, AB=16. Найдите AC.
Площадь прямоугольного треугольника равна 392√
Найдите площадь трапеции, изображённой на рисунке.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=12, BC=6. Найдите AD.
На стороне AB треугольника ABC взята точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=12, BC=18 и CD=8.
Комментарии: