Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?
Обозначим:
S - расстояние от пристани до места рыбалки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 6-2=4 км/ч, по течению - 6+2=8 км/ч.
Составим уравнения:
движение лодки против течения:
S=4t1
движение лодки по течению:
S=8t2
общее время поездки:
5=t1+t2+2
t1=3-t2
S=4(3-t2)
S=8t2
Вычтем из первого уравнения второе:
S-S=4(3-t2)-8t2
0=12-4t2-8t2
0=12-12t2
t2=1
Подставляем во второе уравнение:
S=8t2=8*1=8 км.
Ответ: 8 км.
Поделитесь решением
Присоединяйтесь к нам...
Баржа прошла по течению реки 40 км и, повернув обратно, прошла ещё 30 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
Решите неравенство (x-1)2<√
Государству принадлежит 60% акций предприятия, остальные акции принадлежат частным лицам. Общая прибыль предприятия после уплаты налогов за год составила 70 млн руб. Какая сумма (в рублях) из этой прибыли должна пойти на выплату частным акционерам?
Первый рабочий за час делает на 9 деталей больше, чем второй, и заканчивает работу над заказом, состоящим из 112 деталей, на 4 часа раньше, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
Найдите корень уравнения (x-10)2=(2-x)2.
Комментарии: