Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 2 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч?
Обозначим:
S - расстояние от лагеря до места прогулки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 6-3=3 км/ч, по течению - 6+3=9 км/ч.
Составим уравнения:
движение лодки против течения:
S=3t1
движение лодки по течению:
S=9t2
время в поездке:
6=t1+t2+2
t1=4-t2
S=3(4-t2)
S=9t2
Вычтем из первого уравнения второе:
S-S=3(4-t2)-9t2
0=12-3t2-9t2
0=12-12t2
t2=1
Подставляем во второе уравнение:
S=9t2=9*1=9 км.
Ответ: 9 км.
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение (x2-9)2+(x2-2x-15)2=0.
Известно, что a и b — положительные числа и a>b. Сравните 1/a и 1/b.
Решите уравнение x6=(7x-12)3.
Решите уравнение (x2-9)2+(x2-2x-15)2=0.
Укажите неравенство, которое не имеет решений.
1) x2-56>0
2) x2+56>0
3) x2-56<0
4) x2+56<0
Комментарии: