Центральный угол AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 5.
Рассмотрим треугольник АОВ. АО=ОВ, т.к. это радиусы окружности. Следовательно,
треугольник АОВ - равнобедренный. Следовательно, /ОВА = /ОАВ (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника 180°=/AOB+/ОАВ+/ОBA. => /ОАВ+/ОBA=180°-60°=120°
А т.к. /ОАВ=/ОBA, то /ОАВ=/ОBA=120°/2=60°
Следовательно треугольник АОВ - равносторонний (по свойству равностороннего треугольника). Следовательно, R=ОВ=ОА=АВ=5.
Ответ: AB=5.
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=2, AC=8. Найдите AK.
В треугольнике ABC угол C равен 90°, BC=6, sinA=0,6. Найдите AB.
В окружности с центром в точке O проведены диаметры AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.
Комментарии:
(2015-04-28 19:33:07) Администратор: Иван, спасибо, что заметили опечатку. Ответ тот же, но замечание верное. еще раз спасибо!
(2015-04-28 16:44:20) Иван: Почему Ответ: R=5?Когда нам надо найти длину хорды AB