ОГЭ, Математика. Геометрия: Задача №D39CE0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D39CE0

Задача №233 из 1084
Условие задачи:

Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.

Решение задачи:

Рассмотрим треугольники FAB, BCD и DEF.
Т.к. шестиугольник правильный, то FA=AB=BC=CD=DE=EF и углы /FAB=/BCD=/DEF. Значит рассматриваемые треугольники равны (по первому признаку равенства). Следовательно, FB=BD=DF. Т.е. треугольник BDF - равносторонний.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №936640

Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.



Задача №02D3B8

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.



Задача №0511E1

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?



Задача №AC6D81

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №A7F300

В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика