Из пункта А в пункт В, расстояние между которыми 34 км, выехал велосипедист. Одновременно с ним из В в А вышел пешеход. Велосипедист ехал со скоростью, на 8 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 24 км от пункта А.
Введем обозначения:
vп - скорость перехода
vв - скорость велосипедиста
tп - время в пути перехода
tв - время в пути велосипедиста
Расстояние, которое проехал велосипедист = 24 км (по условию задачи)
Расстояние, которое прошел пешеход = 34-24=10 км (по условию задачи)
24=vв*tв
По условию: vв=vп+8
tв=tп-0,5 (т.к. велосипедист остановился на 0,5 часа)
10=vп*tп - уравнение (1)
24=(vп+8)(tп-0,5)- уравнение (2)
Раскроем скобки в уравнении (2):
24=vпtп-0,5vп+8tп-4
Так как 10=vп*tп, то
24=10-0,5vп+8tп-4
18=8tп-0,5vп
18+0,5vп=8tп
tп=(18+0,5vп)/8
Подставим tп в уравнение (1)
10=vп*(18+0,5vп)/8
80=vп*(18+0,5vп)
80=18vп+0,5(vп)2
0,5(vп)2+18vп-80=0
Найдем дискриминант:
D=(18)2-4*0,5*(-80)=324+160=484
v1=(-18+22)/(2*0,5)=4
v2=(-18-22)/(2*0,5)=-40
Так как скорость отрицательной быть не может, значит vп=4 км/ч
Ответ: vп=4 км/ч
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение x3+5x2-x-5=0.
На каком рисунке изображено множество решений системы неравенств
x<8
9-x<0?
1) система не имеет решений
2)
3)
4)
На координатной прямой отмечено число c. Расположите в порядке возрастания числа 1c; c; c2.
1) c2; c; 1/c
2) c2; 1/c; c
3) 1/c; c; c2
4) 1/c; c2; c
Решите неравенство x2-25<0.
1) (-∞;+∞)
2) нет решений
3) (-5;5)
4) (-∞;-5)∪(5;+∞)
Теплоход проходит по течению реки до пункта назначения 165 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 18 часов после отплытия из него.
Комментарии: