Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Площадь круга меньше квадрата длины его диаметра.
3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
Рассмотрим каждое утверждение.
1) "Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны", это утверждение неверно, т.к. не соответствует ни одному из
признаков равенства треугольников.
2) "Площадь круга меньше квадрата длины его диаметра". Прощадь круга равна ΠR2, или ΠD2/4. Число Π (Пи) равно, приблизительно, 3,14. Тогда Sкруга=0,785D2. А это, конечно меньше, чем D2. Утверждение верно
3) "Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб", это утверждение неверно, т.к. полностью не соответствует ни одному
свойству ромба. Например, четырехугольник, изображенный на рисунке, его диагонали перпендикулярны, но очевидно, что это не ромб.
Поделитесь решением
Присоединяйтесь к нам...
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите этот диаметр, если диаметр описанной окружности треугольника ABC равен 8.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 208. Найдите стороны треугольника ABC.
В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
50° и 85°. Найдите меньший угол параллелограмма.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Комментарии: