Точка О – центр окружности, /BOC=60° (см. рисунок). Найдите величину угла BAC (в градусах).
По условию /BOC=60°, этот угол является
центральным, соответственно дуга ВC тоже равна 60°. /BAC - является
вписанным углом и равен половине дуги, на которую опирается (по теореме о вписанном угле). Соответственно, 60/2=30.
Ответ: /BAC=30°.
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.
Радиус окружности, описанной около квадрата, равен 38√2. Найдите радиус окружности, вписанной в этот квадрат.
Высота AH ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.
В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.
Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).
Комментарии: