На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 4 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1 м?
Рисунок,предложенный в задаче можно условно перерисовать в виде треугольников. Рассмотрим треугольники ABO и COD.
1) /BOA=/DOC, т.к. они
вертикальные.
2) /OBA=/ODC=90°
3) /BAO=/DCO, т.к. они
внутренние накрест-лежащие.
Следовательно, треугольники ABO и COD
подобны (по признаку подобия). Отсюда следует, что CO/AO=CD/AB. Поэтому при движении, высота концов журавля будет подчиняться этой же пропорции.
CO/AO=CD/AB=CF/AE
6/4=CF/1 => CF=6/4=1,5.
Ответ: конец длинного плеча опустится на 1,5 метра.
Поделитесь решением
Присоединяйтесь к нам...
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 45 и 46, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Найдите площадь трапеции, изображённой на рисунке.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 3 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
В треугольнике ABC угол C равен 90°, sinB=5/17, AB=51. Найдите AC.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=36°. Найдите угол NMB. Ответ дайте в градусах.
Комментарии: