Точка О – центр окружности, /BAC=20° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=20°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 20°*2=40°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=40°.
Ответ: /BOC=40°.
Поделитесь решением
Присоединяйтесь к нам...
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.
Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 48, а площадь равна 288.
В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.
Комментарии: