Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=60°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 60°*2=120°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=120°.
Ответ: /BOC=120°.
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Любой квадрат является ромбом.
2) Против равных сторон треугольника лежат равные углы.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Площадь прямоугольного треугольника равна 2450√
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
ABCDEFGHIJ – правильный десятиугольник. Найдите угол ADI. Ответ дайте в градусах.
Высота AH ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.
Комментарии: