Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=60°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 60°*2=120°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=120°.
Ответ: /BOC=120°.
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=52°. Ответ дайте в градусах.
Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Углы при одном из оснований трапеции равны 50° и 40°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 15 и 13. Найдите основания трапеции.
Комментарии: