Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Рассмотрим каждое утверждение.
1) "На плоскости существует единственная точка, равноудалённая от концов отрезка", это утверждение неверно, т.к. любая точка, принадлежащая
серединному перпендикуляру, равноудалена от концов отрезка (
свойство серединного перпендикуляра).
2) "Центром вписанной в треугольник окружности является точка пересечения его биссектрис", это утверждение верно (
свойство вписанной окружности).
3) "Если гипотенуза и острый угол одного
прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны". Прилежащий к известному острому углу катет равен проиведению косинуса этого угла на гипотенузу (из
определения косинуса). Следовательно этот катет тоже будет равен у обоих треугольников. Тогда по
первому признаку равенства, получается, что эти треугольники равны. Т.е. это утверждение верно.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен
45°. Найдите площадь трапеции.
Найдите тангенс угла
AOB.
Найдите тангенс угла AOB.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=8, BC=24. Найдите AK.
Комментарии: