Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=22+82
AO2=4+64=68
AO=68=217
AB2=72+62
AB2=49+36=85
AB=85
BO2=92+22
BO2=81+4=85
BO=85
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(85)2=(217)2+(85)2-2*217*85*cos∠AOB
85=4*17+85-417*85*cos∠AOB
85=153-41445*cos∠AOB
-68=-41445*cos∠AOB
17=1445*cos∠AOB
cos∠AOB=17/1445
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(17/1445)2=1
sin2∠AOB+289/1445=1
sin2∠AOB+17/85=1
sin2∠AOB+1/5=1
sin2∠AOB=4/5
sin∠AOB=2/5
tg∠AOB=sin∠AOB/cos∠AOB=(2/5)/(17/1445)= (2*1445)/(175)=(2*289)/17=(2*17)/17=2
Ответ: tg∠AOB=2


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=9/2=4,5
2) Для красного треугольника: tgβ=2/8=0,25
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)=(4,5-0,25)/(1+4,5*0,25)=4,25/2,125=2
Ответ: tg∠AOB=2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №05D5F0

Катеты прямоугольного треугольника равны 15 и 1. Найдите синус наименьшего угла этого треугольника.

Задача №5E9226

Точка О – центр окружности, /AOB=70° (см. рисунок). Найдите величину угла ACB (в градусах).

Задача №2ED62B

ABCDEFGHI – правильный девятиугольник. Найдите угол ADC. Ответ дайте в градусах.

Задача №CD62B1

Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 16,5 см, а длина – 28 см. Найдите расстояние между точками A и B (в метрах).

Задача №029772

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.

Комментарии:


(2015-05-16 19:18:34) Светлана: Полностью согласна с Еленой. Для учащихся 9 класса её способ в ЭТОЙ задаче рациональней!
(2015-04-06 22:41:10) Администратор: Елена, про формулу я согласен, поэтому и опубликовал другой способ - через теорему синусов. К 397 задаче я оставил свой комментарий, но повторю его и здесь. Любая неточность в рисунке, и Вам придется несколько раз применять теорему Пифагора, чтобы найти перпендикуляр. Я не считаю этот метод правильным. Через теорему косинусов - это универсальный способ: 1) Математически точен, 2) не надо на рисунке пытаться достраивать перпендикуляр, 3) это не так долго. как может показаться, просто я подробно расписываю каждое действие.
(2015-04-06 21:34:32) Елена: Сам подход только через теорему Пифагора универсален. В 9 классе ещё не изучают тригонометрические формулы, за исключением основного тригонометрического тождества. Да не везде равнобедренный треугольник, тогда смотри комментарии к 397 задаче (она решается также, как задача 482). Время для решения первой части экзамена ограниченно, а с теоремой косинусов нужно повозиться.
(2015-04-06 20:42:05) Администратор: Елена, для данной задачи получится так решить, но решение не универсально. Не во всех задачах задан равнобедренный треугольник. Эту и аналогичные задачи можно решить по теореме косинусов (как задачу №482)
(2015-04-06 16:55:18) Елена: Треугольник OBA равнобедренный, т.к. OB=AB ( находим их по теореме Пифагора , как диагонали соответствующих им прямоугольников). По клеткам явно видно середину OA (назовём её M). В равнобедренном треугольнике медиана является высотой, значит треугольник OMB прямоугольный. По определению тангенса tgAOB=BM/OM. Находим диагонали BM и OM из соответствующих прямоугольников и ответ: 2. Придётся поработать с корнями, зато не надо заучивать формулу тангенса разности двух углов.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика