Точка О – центр окружности, /BOC=70° (см. рисунок). Найдите величину угла BAC (в градусах).
По условию /BOC=70°, этот угол является
центральным, соответственно дуга ВC тоже равна 70°. /BAC - является
вписанным углом и равен половине дуги, на которую опирается (по теореме о вписанном угле). Соответственно, 70/2=35.
Ответ: /BAC=35°.
Поделитесь решением
Присоединяйтесь к нам...
Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.
Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол STV. Ответ дайте в градусах.
Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.
Найдите площадь треугольника, изображённого на рисунке.
ABCDEFGH – правильный восьмиугольник. Найдите угол EFG. Ответ дайте в градусах.
Комментарии: