Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны"? это утверждение верно по
первому признаку подобия.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Из прямоугольников, только у квадрата диагонали перпендикулярны (
свойство квадрата, которого нет у прямоугольников).
3) "У равностороннего треугольника есть
центр симметрии", это утверждение неверно. Есть три
оси симметрии, совпадающих с любой из
высот
равностороннего треугольника.
Поделитесь решением
Присоединяйтесь к нам...
На окружности с центром в точке O отмечены точки A и B так, что ∠AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги AB.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 130°. Найдите вписанный угол ACB. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, BC=2, sinA=0,2. Найдите AB.
Комментарии: