Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны"? это утверждение верно по
первому признаку подобия.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Из прямоугольников, только у квадрата диагонали перпендикулярны (
свойство квадрата, которого нет у прямоугольников).
3) "У равностороннего треугольника есть
центр симметрии", это утверждение неверно. Есть три
оси симметрии, совпадающих с любой из
высот
равностороннего треугольника.
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=42. Найдите MN.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
Комментарии: