Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №0A3F51

Задача №445 из 1055
Условие задачи:

В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.

Решение задачи:

Рассмотрим треугольник ABF.
По свойству биссектрисы:
BG/GF=AB/AF=17/15
cosA=AF/AB=15/17 (по определению косинуса)
Существует тригонометрическая формула:
sin2α+cos2α=1
Тогда:
sin2∠BAF+cos2∠BAF=1
sin2∠BAF+(15/17)2=1
sin2∠BAF=1-225/289
sin2∠BAF=(289-225)/289
sin2∠BAF=64/289
sin∠BAF=8/17
По теореме синусов:
BC/sin∠BAF=2R
16/(8/17)=16*17/8=34=2R
R=34/2=17
Ответ: R=17

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №CA72D9

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.

Задача №A2BBBF

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.

Задача №1D3364

Найдите тангенс угла А треугольника ABC, изображённого на рисунке.

Задача №19E142

Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.

Задача №66BA84

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.

Комментарии:


(2014-05-14 20:55:14) Аделя: конечно из 2 части.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика