В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.
Рассмотрим треугольник ABF.
По свойству
биссектрисы:
BG/GF=AB/AF=17/15
cosA=AF/AB=15/17 (по
определению косинуса)
Существует тригонометрическая формула:
sin2α+cos2α=1
Тогда:
sin2∠BAF+cos2∠BAF=1
sin2∠BAF+(15/17)2=1
sin2∠BAF=1-225/289
sin2∠BAF=(289-225)/289
sin2∠BAF=64/289
sin∠BAF=8/17
По
теореме синусов:
BC/sin∠BAF=2R
16/(8/17)=16*17/8=34=2R
R=34/2=17
Ответ: R=17
Поделитесь решением
Присоединяйтесь к нам...
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 62°. Найдите величину угла OMK. Ответ дайте в градусах.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
60° и 55°. Найдите меньший угол параллелограмма.
Укажите номера верных утверждений.
1) Диагонали любого прямоугольника равны.
2) Если в треугольнике есть один острый угол, то этот треугольник остроугольный.
3) Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.
В выпуклом четырехугольнике ABCD AB=BC, AD=CD, ∠B=100° , ∠D=104°. Найдите угол A . Ответ дайте в градусах.
Комментарии:
(2014-05-14 20:55:14) Аделя: конечно из 2 части.