На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,6 м, если длина его тени равна 8 м, высота фонаря 5 м?
Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE, эти треугольники
подобны, т.к. /C - общий, /B и /DEC - прямые, а углы A и EDC - равны, так как являются
соответственными.
Из подобия этих треугольников следует, что AB/DE=BC/EC,
AB/DE=(BE+EC)/EC, отсюда (AB*EC)/DE=BE+EC
BE=(AB*EC)/DE-EC
BE=(5*8)/1,6-8=17
Ответ: расстояние от фонаря до человека 17 м.
Поделитесь решением
Присоединяйтесь к нам...
От столба к дому натянут провод длиной 10 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 8 м. Ответ дайте в метрах.
Синус острого угла A треугольника ABC равен
. Найдите CosA.
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Косинус острого угла A треугольника ABC равен
. Найдите sinA.
Комментарии: