В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=60, BC=40. Найдите CM.
Так как треугольник ABC прямоугольный, то воспользуемся теоремой об описанной окружности для прямоугольного треугольника. Для этого опишем окружность вокруг треугольника ABC.
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине гипотенузы.
Получается, что точка М и есть центр окружности, следовательно:
R=AM=MB=AB/2=60/2=30
CM тоже является радиусом окружности, т.е.:
CM=R=30
Ответ: 30
Поделитесь решением
Присоединяйтесь к нам...
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 12°?
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, BC=6, sinA=0,6. Найдите AB.
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.
Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Комментарии: