Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Отрезок AB перпендикулярен OB (по
свойству касательной).
Следовательно, треугольник ABO
прямоугольный.
Тогда можно применить
теорему Пифагора:
AO2=AB2+OB2
AO2=322+242
AO2=1024+576
AO2=1600
AO=40
AO=AD+OD
OD - радиус окружности, следовательно OD=24.
40=AD+24
AD=16
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 80°. Найдите меньший угол параллелограмма.
В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.
Комментарии: