ЕГЭ, Математика (базовый уровень). Функции: Задача №106EB7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ЕГЭ, Математика (базовый уровень).
Функции: Задача №106EB7

Задача №35 из 36
Условие задачи:

На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.

В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

ТОЧКИ ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
А 1) -0,7
B 2) 1,4
C 3) -1,8
D 4) 0,5
В таблице под каждой буквой укажите соответствующий номер.

Решение задачи:

Производную от функции, в данном случае, лучше рассматривать как тангенс угла наклона касательной. Если тангенс положительный (т.е. угол острый), то и производная положительна и наоборот.
Тогда сразу можно сказать, что в точках B и C - значение производной положительно.
А в точках A и D - отрицательно.
Если посмотреть на таблицу углов, то ставится понятно, что при увеличени угла значение тангенса увеличивается (tg0°=0, tg45°=1, tg90°=+∞).
Следовательно, значение тангенса в точке B больше значения тангенса в точке C.
Получаем, что:
В точке B - значение производной равно 1,4.
В точке C - значение производной равно 0,5.
При дальнейшем увеличении угла (от 90° до 180°) значение тангенса меняется от -∞ до 0, т.е. уменьшается по модулю.
Следовательно, в точке A значение производной равно -1,8, а в точке D - значение производной равно -0,7.
Ответ:

A B C D
3) 2) 4) 1)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C77447

Установите соответствие между графиками функций и характеристиками этих функций на отрезке [-1;1].
ГРАФИКИ
А) Б) В) Г)
ХАРАКТЕРИСТИКИ
1) функция принимает отрицательное значение в каждой точке отрезка [-1;1]
2) функция возрастает на отрезке [-1;1]
3) функция принимает положительное значение в каждой точке отрезка [-1;1]
4) функция убывает на отрезке [-1;1]
В таблице под каждой буквой укажите соответствующий номер.



Задача №50DE07

На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия.
Определите по диаграмме наименьшую среднемесячную температуру во второй половине 1988 года. Ответ дайте в градусах Цельсия.



Задача №A7F27E

На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
ФУНКЦИИ
А) Б) В) Г)
КОЭФФИЦИЕНТЫ
1) a<0, c<0
2) a<0, c>0
3) a>0, c>0
4) a>0, c<0
В таблице под каждой буквой укажите соответствующий номер.



Задача №B06F05

На рисунке изображён график значений атмосферного давления в некотором городе за три дня. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба.
Определите по рисунку наибольшее значение атмосферного давления за данные три дня (в миллиметрах ртутного столба).



Задача №C16C4B

На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной — время в минутах, прошедшее с начала движения автобуса.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ ХАРАКТЕРИСТИКИ
А) 4-8 мин. 1) была остановка длительностью 2 минуты
Б) 8-12 мин. 2) скорость не меньше 20 км/ч на всём интервале
В) 12-16 мин. 3) скорость не больше 60 км/ч
Г) 18-22 мин. 4) была остановка длительностью ровно 1 минута
В таблице под каждой буквой укажите соответствующий номер.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Касательная к графику функции
Касательная к графику функции ƒ, дифференцируемой в точке x0 - это прямая, проходящая через точку (x0; ƒ(x0)) и имеющая угловой коэффициент ƒ′(x0).

Т.е. касательная - это прямая, любая прямая имеет вид y=kx+b. k для этой прямой - это тангенс угла наклона касательной, а так же производная функции в данной точке (x0):
k=tgα=ƒ′(x0)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика