ЕГЭ, Математика (базовый уровень). Функции: Задача №172B0D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ЕГЭ, Математика (базовый уровень).
Функции: Задача №172B0D

Задача №17 из 36
Условие задачи:

На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.

В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

ТОЧКИ ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
А 1) 0,5
B 2) -0,7
C 3) 4
D 4) -3
В таблице под каждой буквой укажите соответствующий номер.

Решение задачи:

Производную от функции, в данном случае, лучше рассматривать как тангенс угла наклона касательной. Если тангенс положительный (т.е. угол острый), то и производная положительна и наоборот.
Тогда сразу можно сказать, что в точках B и C - значение производной положительно.
А в точках A и D - отрицательно.
Если посмотреть на таблицу углов, то ставится понятно, что при увеличени угла значение тангенса увеличивается (tg0°=0, tg45°=1, tg90°=+∞).
Следовательно, значение тангенса в точке B больше значения тангенса в точке C.
Получаем, что:
В точке B - значение производной равно 4.
В точке C - значение производной равно 0,5.
При дальнейшем увеличении угла (от 90° до 180°) значение тангенса меняется от -∞ до 0, т.е. уменьшается по модулю.
Следовательно, в точке A значение производной равно -3, а в точке D - значение производной равно -0,7.
Ответ:

A B C D
4) 3) 1) 2)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №DC8B01

На рисунке жирными точками показан курс австрийского шиллинга, установленный Центробанком РФ во все рабочие дни в январе 1999 года. По горизонтали указываются числа месяца, по вертикали — цена австрийского шиллинга в рублях. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наибольший курс австрийского шиллинга за данный период. Ответ дайте в рублях.



Задача №59B07E

На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной — время в минутах, прошедшее с начала движения автобуса.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.

ИНТЕРВАЛЫ ВРЕМЕНИ ХАРАКТЕРИСТИКИ
А) 0–4 мин. 1) была остановка длительностью ровно 1 минута
Б) 4–8 мин. 2) скорость автобуса достигла максимума за всё время движения
В) 8–12 мин. 3) две минуты автобус двигался с постоянной ненулевой скоростью
Г) 12–16 мин. 4) была остановка длительностью 2 минуты
В таблице под каждой буквой укажите соответствующий номер.



Задача №50DE07

На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия.
Определите по диаграмме наименьшую среднемесячную температуру во второй половине 1988 года. Ответ дайте в градусах Цельсия.



Задача №B06F05

На рисунке изображён график значений атмосферного давления в некотором городе за три дня. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба.
Определите по рисунку наибольшее значение атмосферного давления за данные три дня (в миллиметрах ртутного столба).



Задача №E91CF1

На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.
В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

ТОЧКИ ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
A 1) -1,5
B 2) 0,5
C 3) 2
D 4) -0,3
В таблице под каждой буквой укажите соответствующий номер.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Определение производной функции через предел
Пусть в некоторой окрестности точки определена функция . Производной функции ƒ в точке x0 называется предел, если он существует,
.
Общепринятые обозначения производной функции y=ƒ(x) в точке x0:
ƒ′(x0)=ƒ′x(x0)=ý(x0)
Другое определение Производной функции
Пусть в некоторой окрестности точки определена функция . Производной функции называется такое число A, что функцию в окрестности U(x0) можно представить в виде ƒ(x0+h)=ƒ(x0)+Ah+o(h), если A существует.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика