Постройте график функции
x2-6x+11 при x≥2
x+1 при x<2
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=x2-6x+11 на диапазоне [2;+∞)
y2=x+1 на диапазоне (-∞;2)
Проанализируем графики.
Первая подфункция:
1) график - парабола
2) так как коэффициент а=1 (т.е. больше нуля), то ветви направлены вверх
3) Найдем корни соответствующего уравнения через
дискриминант x2-6x+11=0, чтобы узнать в каких точках парабола пересекает ось Х:
D=(-6)2-4*1*11=36-44=-8
D<0, это означает, уравнение не имеет корней, а значит парабола не пересекает ось Х.
Дальше будем строить по точкам (красный график):
X | 2 | 3 | 4 | 5 |
Y | 3 | 2 | 3 | 6 |
X | 2 | 1 | 0 |
Y | 3 | 2 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-2x+4
Б) y=2x-4
В) y=2x+4
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Известно, что графики функций y=-x2+p и y=-4x+5 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2x+4 2) y=-2x-4 3) y=2x-4 4) y=-2x+4 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.
Комментарии: