Постройте график функции
y=x|x|+2|x|-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Данная функция содержит
модуль, следовательно ее нужно разложить на две функции:
Обе подфункции - параболы. Построим их по точкам:
y1=x2-x на диапазоне от 0 до плюс бесконечности (красный график):
X | 0 | 1 | 2 | 3 |
Y | 0 | 0 | 2 | 6 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 4 | 6 | 6 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А)
Б)
В)
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Известно, что графики функций y=x2+p и y=2x-5 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции
-x2+10x-21 при x≥3
-x+3 при x<3
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-2x+4
Б) y=2x-4
В) y=2x+4
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2/x 2) y=x2-2 3) y=2x 4) y=2-x2 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: