Постройте график функции
y=|x2-x-2|.
Какое наибольшее число общих точек может иметь график данной функции с прямой, параллельной оси абсцисс?
Построить график функции, которая заключена в
модуль, довольно просто.
Достаточно построить график функции без модуля, а потом, всю часть графика, которая располагается под осью Х зеркально отобразить над осью Х. Так и поступим.
Построим график функции y=x2-x-2.
Найдем точки, где график пересекает ось Х, это будут корни уравнения:
x2-x-2=0.
Найдем корни этого квадратного уравнения через дискриминант:
D=(-1)2-4*1*(-2)=1+8=9
x1=(-(-1)+3)/(2*1)=(1+3)/2=2
x2=(-(-1)-3)/(2*1)=(1-3)/2=-1
Теперь найдем координаты вершины параболы:
x0=-b/(2a)=-(-1)/(2*1)=1/2=0,5
y0=0,52-0,5-2=0,25-0,5-2=-2,25
Строим график:
А теперь, как говорилось ранее, часть графика, которая находится под осью Х, зеркально отобразим над осью Х:
Это и будет графиком функции y=|x2-x-2|.
Очевидно, что график данной функции имеет 4 общие точки с прямой, параллельной оси абсцисс (зеленая прямая).
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=2x+6|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
При работе фонарика батарейка постепенно разряжается и напряжение
в электрической цепи фонарика падает. На графике показана зависимость напряжения в цепи от времени работы фонарика. На горизонтальной оси отмечено время работы фонарика в часах, на вертикальной оси — напряжение в вольтах. Определите по графику, за сколько часов работы фонарика напряжение упадёт с 1 В до 0,8 В.
На рисунке показано, как изменялась температура воздуха на протяжении одних суток. По горизонтали указано время суток, по вертикали — значение температуры в градусах Цельсия. Найдите разность между наибольшим и наименьшим значениями температуры в первой половине суток. Ответ дайте в градусах Цельсия.
Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) f(x)<0 при x<1
2) Наибольшее значение функции равно 4
3) Функция возрастает на промежутке (-∞; 1]
Комментарии: