Постройте график функции y=x2-3|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствует
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-3x-x, при x≥0
x2-3(-x)-x, при x<0
x2-4x, при x≥0
x2+2x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | -3 | -4 | -3 |
X | 0 | -1 | -2 | -3 |
Y | 0 | -1 | 0 | 3 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c<0 2) a>0, c>0 3) a>0, c<0 4) a<0, c>0 |
А) | Б) | В) |
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Постройте график функции .
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком
ни одной общей точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2/x 2) y=x2-2 3) y=2x 4) y=2-x2 |
А) | Б) | В) |
Комментарии:
(2024-03-30 23:13:09) Аня: Постройте график функции и определите, при каких значениях параметра c прямая имеет с графиком три общие точки.