Постройте график функции y=3|x+2|-x2-3x-2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
В данной функции присутствует модуль, следовательно функцию надо разложить на две функции, в зависимости от значения модуля:
|x+2|=x+2, при x+2≥0 (т.е. x≥-2)
|x+2|=-(x+2), при х+2<0 (т.е. х<-2)
Тогда вся функция будет выглядеть так:
3(x+2)-x2-3x-2, при x≥-2
-3(x+2)-x2-3x-2, при x<-2
3x+6-x2-3x-2, при x≥-2
-3x-6-x2-3x-2, при x<-2
-x2+4, при x≥-2
-x2-6x-8, при x<-2
График обеих подфункций - парабола, у обеих подфункций коэффициент "а" равен -1, т.е. меньше нуля. Следовательно, ветви обеих парабол направлены вниз.
Построим по точкам графики обеих подфункций, но первый график на диапазоне от -2 до +∞, а второй график на диапазоне от -∞ до -2 (как указано в системе).
Подфункция y=-x2+4 (Красный график)
X | -2 | -1 | 0 | 1 | 2 | 3 |
Y | 0 | 3 | 4 | 3 | 0 | -5 |
X | -2 | -3 | -4 | -5 |
Y | 0 | 1 | 0 | -3 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Постройте график функции:
и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Постройте график функции
y=x|x|-|x|-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображена функция вида y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ
А) Функция возрастает на промежутке
Б) Функция убывает на промежутке
ПРОМЕЖУТКИ
1) [0;3]
2) [-1;1]
3) [2;4]
4) [1;4]
Комментарии: