Постройте график функции y=|x|(x-1)-3x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x(x-1)-3x, при x≥0
y=(-x)(x-1)-3x, при x<0
y=x2-x-3x, при x≥0
y=-x2+x-3x, при x<0
y=x2-4x, при x≥0
y=-x2-2x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y=x2-4x, при x≥0
Графиком данной подфункции является парабола. Ветви этой параболы направлены вверх, так как коэффициент при x2 положительный.
Найдем корни уравнения x2-4x=0
x(x-4)=0
x1=0
x-4=0
x2=4
Построим график по точкам:
X | 0 | 1 | 2 | 3 | 4 |
Y | 0 | -3 | -4 | -3 | 0 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 1 | 0 | -3 |
Поделитесь решением
Присоединяйтесь к нам...
Какое из данных ниже чисел является значением выражения (√17-4)(√17+4)?
1) 13
2) 21
3) 1
4) 33
Найдите значение выражения при a=9,2, b=18.
Найдите ƒ(6), если ƒ(x+2)=37-x.
Найдите значение выражения (√41-3)(√41+3).
Решите уравнение (4x-8)2(x-8)=(4x-8)(x-8)2.
Комментарии:
(2016-10-22 20:25:22) Администратор: Павел, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-10-22 17:44:59) Павел: y = |7 - (x - 4)^2| + 1