Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
Пусть х - количество деталей, которое делает второй рабочий за час.
Тогда х+10 - количество деталей, которое делает первый рабочий за час.
t - количество часов, затраченное первым рабочим на выполнение заказа.
Тогда t+3 - количество часов, затраченное вторым рабочим на выполнение заказа.
Получаем систему:
60=(x+10)t
60=x(t+3)
(x+10)t=x(t+3)
xt+10t=xt+3x
10t=3x
t=3x/10=0,3x
В первое уравнение системы вместо t подставляем 0,3x (т.к. они равны):
60=(x+10)0,3x
0,3x2+10*0,3x-60=0
0,3x2+3x-60=0
Решим это квадратное уравнение через дискриминант:
D=32-4*0,3*(-60)=9+72=81
x1=(-3+9)/(2*0,3)=6/0,6=10
x2=(-3-9)/(2*0,3)=-12/0,6=-20
Отрицательным количество деталей быть не может, следовательно, ответ 10.
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
Решите неравенство 9x+8>8x-8.
1) (-∞;-16)
2) (-16;+∞)
3) (-∞;0)
4) (0;+∞)
Решите уравнение 4x+4-3(x+1)=5(-2-x)+5.
Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 39 минут раньше, чем велосипедист приехал в А, а встретились они через 26 минут после выезда. Сколько часов затратил на путь из В в А велосипедист?
Укажите неравенство, которое не имеет решений.
1) x2-2x-35>0
2) x2-2x+35>0
3) x2-2x+35<0
4) x2-2x-35<0
Решите неравенство 9x-4(2x+1)>-8.
1) (-4;+∞)
2) (-12;+∞)
3) (-∞;-4)
4) (-∞;-12)
Комментарии: