ОГЭ, Математика. Уравнения и неравенства: Задача №F9A32A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы решить это неравенство надо найти корни соответствующего уравнения:
x2-49=0
Можно решить это квадратное уравнение через дискриминант, но легче воспользоваться формулой разность квадратов:
x2-72=0
(x-7)(x+7)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x-7=0 => x1=7
2) x+7=0 => x2=-7
Теперь рассмотрим график нашей функции - это парабола.
Так как коэффициент при x2 равен 1, т.е. положительный, то ветви параболы направлены вверх.
Нас интересует диапазон, где наша функция меньше нуля (по условию). Это означает, что график функции располагается под осью Х.
В нашем случае, график находится под осью на диапазоне от x1 до x2.
x1 и x2 - это корни, которые мы нашли ранее.
(-7;7)
Ответ: 3)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0EDCDA

Решите уравнение (x+10)2=(5-x)2.



Задача №0F641B

Решите уравнение (x+1)2+(x-6)2=2x2.



Задача №643ADE

Расстояние между пристанями А и В равно 126 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 36 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.



Задача №19297D

Расстояние между двумя пристанями по реке равно 24 км. Моторная лодка прошла от одной пристани до другой, сделала стоянку на 1 ч 40 мин и вернулась обратно. Всё путешествие заняло 6 целых и 2/3 ч. Найдите скорость течения реки, если известно, что скорость моторной лодки в стоячей воде равна 10 км/ч.



Задача №1B1F2C

Решите неравенство 3x-x2>0.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Решение квадратного уравнения с помощью дискриминанта:
Для нахождения корней квадратного уравнения ax2+bx+c=0 в общем случае следует пользоваться приводимым ниже алгоритмом:
1) Вычислить значение дискриминанта квадратного уравнения:
D=b2-4ac
2) Вычислить корни уравнения:
x1,2=(-b±D)/(2a)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика