Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.
Обозначим:
v - скорость первого автомобиля.
v-10 - скорость второго автомобиля.
t - время первого автомобиля.
t+1 - время второго автомобиля.
Получаем два уравнения:
v*t=560 - для первого автомобиля.
(v-10)(t+1)=560 - для второго автомобиля.
Выразим t через v в первом уравнении:
t=560/v
И подставим его во второе уравнение:
Раскроем скобки:
Умножим все уравнение на v:
v2-5600=10v
v2-10v-5600=0
Решим это квадратное уравнение через дискриминант:
D=(-10)2-4*1*(-5600)=100+22400=22500
v1=(-(-10)+150)/(2*1)=(10+150)/2=160/2=80
v2=(-(-10)-150)/(2*1)=(10-150)/2=-140/2=-70
Так как скорость не может быть отрицательной, то остается только один вариант.
Ответ: 80
Поделитесь решением
Присоединяйтесь к нам...
Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 9 км/ч?
Решите уравнение (x2-36)2+(x2+4x-12)2=0.
На координатной прямой отмечено число a.
Найдите наибольшее из чисел a2, a3, a4.
1) a2
2) a3
3) a4
4) не хватает данных для ответа
Решите уравнение (x-3)2(x-5)=35(x-3).
Решите уравнение (x-5)2=(x+10)2.
Комментарии: