Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
Пусть х - количество деталей, которое делает второй рабочий за час.
Тогда х+10 - количество деталей, которое делает первый рабочий за час.
t - количество часов, затраченное первым рабочим на выполнение заказа.
Тогда t+3 - количество часов, затраченное вторым рабочим на выполнение заказа.
Получаем систему:
60=(x+10)t
60=x(t+3)
(x+10)t=x(t+3)
xt+10t=xt+3x
10t=3x
t=3x/10=0,3x
В первое уравнение системы вместо t подставляем 0,3x (т.к. они равны):
60=(x+10)0,3x
0,3x2+10*0,3x-60=0
0,3x2+3x-60=0
Решим это квадратное уравнение через дискриминант:
D=32-4*0,3*(-60)=9+72=81
x1=(-3+9)/(2*0,3)=6/0,6=10
x2=(-3-9)/(2*0,3)=-12/0,6=-20
Отрицательным количество деталей быть не может, следовательно, ответ 10.
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение x2-5x-14=0.
Укажите неравенство, которое не имеет решений.
1) x2-8x-83>0
2) x2-8x+83<0
3) x2-8x-83<0
4) x2-8x+83>0
Из пункта А в пункт В, расстояние между которыми 27 км, вышел турист. Через полчаса навстречу ему из пункта В вышел пешеход и встретил туриста в 12 км от А. Найдите скорость туриста, если известно, что она была на 2 км/ч меньше скорости пешехода.
Найдите корень уравнения 1-7(4+2x)=-9-4x.
Укажите решение системы неравенств

1) (2;8)
2) (-∞;2)
3) нет решений
4) (8;+∞)
Комментарии: