Решите уравнение x3+5x2=9x+45.
x3+5x2=9x+45
x3+5x2-(9x+45)=0
x2(x+5)-9(x+5)=0
Вынесем (x+5) за общую скобку:
(x+5)(x2-9)=0
(x+5)(x2-32)=0
(x+5)
(x-3)(x+3)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим три варианта:
1) x+5=0 => x1=-5
2) x-3=0 => x2=3
3) x+3=0 => x3=-3
Ответ: x1=-5, x2=3, x3=-3
Поделитесь решением
Присоединяйтесь к нам...
На координатной прямой отмечено число a.

Найдите наибольшее из чисел a2, a3, a4.
Решите уравнение x2-144=0. Если уравнение имеет более одного корня, в ответ запишите больший из корней.
На координатной прямой отмечено число a.

Расположите в порядке возрастания числа a-1, 1/a, a.
1) a, 1/a , a-1
2) a, a-1, 1/a
3) a-1, a, 1/a
4) 1/a, a-1, a
На координатной прямой отмечено число a.

Расположите в порядке возрастания числа a-1, 1/a, a.
1) a-1, 1/a, a
2) a, 1/a, a-1
3) a-1, a, 1/a
4) a, a-1, 1/a
Решите систему уравнений 
Комментарии: