ОГЭ, Математика. Числовые последовательности: Задача №81EE75 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 4 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=164*(1/2)1=82 (из условия задачи). А q=1/2.
Тогда S4=82*(1-(1/2)4)/(1-1/2)=82*(1-1/16)/(1/2)=82*(15/16)/(1/2)=82*15/16*2/1=82*15/8=153,75
Ответ: S4=153,75

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E73061

Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.



Задача №E942BE

Дана арифметическая прогрессия: 6; 8; 10; … . Найдите сумму первых шестидесяти её членов.



Задача №4CC0B6

Выписаны первые несколько членов арифметической прогрессии: 6; 8; 10; … Найдите сумму первых шестидесяти её членов.



Задача №75ED29

Геометрическая прогрессия задана условием bn=-77*2n. Найдите сумму первых её 5 членов.



Задача №626BB7

Выписано несколько последовательных членов арифметической прогрессии: …; 1; x; -5; -8; … Найдите член прогрессии, обозначенный буквой x.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика