ОГЭ, Математика. Числовые последовательности: Задача №417983 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Любой член геометрической прогрессии можно представить через первый член (b1) и знаменатель прогрессии q.
bn=b1qn-1
Тогда:
b3=b1q2
b6=b1q5

Подставляем значения:
4/7=b1q2
-196=b1q5

Разделим второе уравнение на первое:



q3=-343

Ответ: -7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №BEDF43

В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.



Задача №CCD931

Выписаны первые несколько членов арифметической прогрессии: 1, 3, 5, … Найдите её одиннадцатый член.



Задача №A6F3F1

В первом ряду кинозала 25 мест, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в шестом ряду?



Задача №E53FE9

Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.



Задача №2E13F0

Арифметическая прогрессия (an) задана условиями: a1=3, an+1=an+4. Найдите a10.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика