Дана геометрическая прогрессия (bn), для которой b3=4/7, b6=-196. Найдите знаменатель прогрессии.
Любой член геометрической прогрессии можно представить через первый член (b1) и знаменатель прогрессии q.
bn=b1qn-1
Тогда:
b3=b1q2
b6=b1q5
Подставляем значения:
4/7=b1q2
-196=b1q5
Разделим второе уравнение на первое:
q3=-343
Ответ: -7
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.
Выписаны первые несколько членов арифметической прогрессии: -6; -3; 0; … Найдите сумму первых десяти её членов.
Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.
Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.
Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.
Комментарии: