ОГЭ, Математика. Числовые последовательности: Задача №417983 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Любой член геометрической прогрессии можно представить через первый член (b1) и знаменатель прогрессии q.
bn=b1qn-1
Тогда:
b3=b1q2
b6=b1q5

Подставляем значения:
4/7=b1q2
-196=b1q5

Разделим второе уравнение на первое:



q3=-343

Ответ: -7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1617B1

Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.



Задача №E65C60

Выписаны первые несколько членов арифметической прогрессии: -6; -3; 0; … Найдите сумму первых десяти её членов.



Задача №F8A2D4

Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.



Задача №25E8A7

Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.



Задача №E73061

Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика