Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Вариант №1
По условию задачи
геометрическая прогрессии задана условием: bn+1=(1/2)bn,
следовательно
b2=b1/2, т.е. q=1/2.
b7=b1q7-1=b1q6
b7=64*(1/2)6=64*1/64=1
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
В геометрической прогрессии сумма первого и второго членов равна 120, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.
Записаны первые три члена арифметической прогрессии: -6; 1; 8. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Выписаны первые три члена геометрической прогрессии:
125; -100; 80; …
Найдите её пятый член.
Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.
В геометрической прогрессии сумма первого и второго членов равна 48, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.
Комментарии: