Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Вариант №1
По условию задачи
геометрическая прогрессии задана условием: bn+1=(1/2)bn,
следовательно
b2=b1/2, т.е. q=1/2.
b7=b1q7-1=b1q6
b7=64*(1/2)6=64*1/64=1
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 27-й строке?
Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.
Геометрическая прогрессия задана условием bn=160*3n. Найдите сумму первых её 4 членов.
Комментарии: