Геометрическая прогрессия задана условием bn=160*3n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=160*31=480 (из условия задачи). А q=3.
Тогда S4=480*(1-34)/(1-3)=480*(1-81)/(-2)=480*(-80)/(-2)=19200
Ответ: S4=19200
Поделитесь решением
Присоединяйтесь к нам...
Арифметическая прогрессия (an) задана условиями: a1=3, an+1=an+4. Найдите a10.
Записаны первые три члена арифметической прогрессии: 10; 6; 2. Какое число стоит в этой арифметической прогрессии на 101-м месте?
Выписаны первые три члена геометрической прогрессии:
125; -100; 80; …
Найдите её пятый член.
Дана арифметическая прогрессия (an), в которой a9=-15,7, a18=-22,9.
Найдите разность прогрессии.
Последовательность задана условиями a1=3, an+1=an-4. Найдите a10.
Комментарии:
(2021-10-17 21:31:23) Администратор: Раиль, q=3.
(2021-03-05 19:23:54) РАИЛЬ: 1,3,9, ...;q=
(2015-04-07 21:01:41) Администратор: Дарья, какая формула неправильная?
(2015-04-07 20:15:03) Дарья: По - моему здесь формула неправильная