ОГЭ, Математика. Числовые последовательности: Задача №4CC0B6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №4CC0B6

Задача №81 из 182
Условие задачи:

Выписаны первые несколько членов арифметической прогрессии: 6; 8; 10; … Найдите сумму первых шестидесяти её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
a60 мы не знаем, поэтому воспользуемся второй формулой. Для этого найдем d - разность прогрессии.
d=a2-a1=8-6=2.
Подставляем все в формулу:
Sn=n*(2a1+(n-1)d)/2
S60=60*(2*6+(60-1)*2)/2=30*(12+118)=30*130=3900
Ответ: S60=3900

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EA0BD3

Последовательность (bn) задана условиями: b1=4,
Найдите b3.



Задача №40CA2D

Геометрическая прогрессия задана условием bn=-17,5*2n. Найдите сумму первых её 7 членов.



Задача №2A803D

Геометрическая прогрессия (bn) задана условиями:
, bn+1=-3bn.
Найдите b7.



Задача №0913B2

Дана арифметическая прогрессия: 4; 7; 10; … . Найдите сумму первых шестидесяти пяти её членов.



Задача №8BF9B9

Дана арифметическая прогрессия (an), разность которой равна -8,1, a1=1,4. Найдите a6.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика