ОГЭ, Математика. Алгебраические выражения: Задача №1EE407 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Алгебраические выражения: Задача №1EE407

Задача №92 из 374
Условие задачи:

Какое наибольшее число последовательных натуральных чисел, начиная с 1, можно сложить, чтобы получившаяся сумма была меньше 465?

Решение задачи:

Иными словами, 1+2+3+4+...+n<465. Чему равен максимальный n?
Это арифметическая прогрессия, разность прогрессии d=1, используем формулу суммы:
Sn=(2*1+(n-1)*1)*n/2
Эта сумма должна быть меньше 465.
(2*1+(n-1)*1)*n/2<465
(2+n-1)n<930
n2+n-930<0
Решим это неравенство, решив сначала уравнение n2+n-930=0
D=12-4*1*(-930)=1+3720=3721
n1=(-1+61)/(2*1)=60/2=30
n2=(-1-61)/(2*1)=-62/2=-31
Т.е. n∈(-31;30), заметьте крайние точки не включаются.
nmax=29
Ответ: 29

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EF73A2

Упростите выражение



Задача №0922CD

Найдите значение выражения



Задача №756C64

Какое из данных ниже чисел является значением выражения ?
1) 2
2) 2√7
3) 14
4) 4√7



Задача №0EA59C

Найдите значение выражения
1) 603
2) 1215
3) 1230
4) 365



Задача №25E8AD

Найдите сумму всех положительных членов арифметической прогрессии 11,2; 10,8; …

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика