ОГЭ, Математика. Алгебраические выражения: Задача №23916A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Алгебраические выражения: Задача №23916A

Задача №158 из 374
Условие задачи:

Какое наибольшее число последовательных натуральных чисел, начиная с 1, можно сложить, чтобы получившаяся сумма была меньше 561?

Решение задачи:

Иными словами, 1+2+3+4+...+n<561. Чему равен максимальный n?
Это арифметическая прогрессия, разность прогрессии d=1, используем формулу суммы:
Sn=(2*1+(n-1)*1)*n/2
Эта сумма должна быть меньше 561.
(2*1+(n-1)*1)*n/2<561
(2+n-1)n<1122
n2+n-1122<0
Решим это неравенство, решив сначала уравнение n2+n-1122=0
D=12-4*1*(-1122)=1+4488=4489
n1=(-1+67)/(2*1)=66/2=33
n2=(-1-67)/(2*1)=-68/2=-34
Т.е. n∈(-34;33), заметьте крайние точки не включаются.
nmax=32
Ответ: 32

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №12C576

Квадратный трёхчлен разложен на множители: x2+2x-35=(x-5)(x-a). Найдите a.



Задача №07C789

Какое из чисел больше: 3+5 или 8+6?



Задача №DC2D79

При смешивании первого раствора кислоты, концентрация которого 30%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 45% кислоты. В каком отношении были взяты первый и второй растворы?



Задача №2865B5

Найдите значение выражения 32/8.
1) 2
2) 48
3) 28
4) 16



Задача №23ACB9

Решите уравнение (4x-8)2(x-8)=(4x-8)(x-8)2.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика